	Year	Avg.	Total	
	2010	2.0	1.3 M	
	2015	2.2	1.5 M	
	2020	2.5	1.9 M	

Small Area Estimates in Uganda

Data informed decisions where they are most needed

September 2021

Kristin Bietsch, PhD, Track20

What are small area estimates?

 Small Area Estimates (SAE) are estimate derived from surveys that are for smaller sub-groups than for which the survey was designed

For example:

- National survey conducted
- May have power (sample size and design) for state level estimates
- But what about counties?

Why do we want SAE?

- Decisions are being made at lower administrative levels
- We have current data from service statistics at lower levels
- We want survey data for benchmarking
 - And for running FPET!

Uganda Boundaries Overtime

DHS 2016

Districts

Different techniques for SAE

There are many statistical techniques used to calculate SAE

Most create smoothed surfaces

Technique	
Geo-additive regression	
Geographically weighted regression model	
Kernel estimator	
Spatial empirical Bayes estimation	2
Inverse distance weighting	Ę
Nearest neighbor interpolation	
Conditional autoregressive model	
Geo-additive Probit and Latent Variable Model	•
Bayesian generalized linear geostatistical model	
Bayesian Kriging	
Geo-additive semiparametric Bayesian model	
Geo-statistical Bernoulli & Gaussian models	
Proportional hazards model with spatially correlated random effects	
Zero-inflated Binomial model	

- Vary in time needed and computing power needed
- DHS has some modeled surfaces available online
- Track20 uses kernel estimators to create smoothed surfaces more quickly, using free software

Data

- DHS with geospatial data
- Population estimates
- Administrative boundaries

Southampton

Software

- RStudio
 - PrevR Package
- QGIS

5

- I. Calculate cluster level prevalence
- 2. Use kernel estimator technique to create smoothed surface
- 3. Combine with population data to estimate users
- 4. Aggregate number of users and total number of women per administrative unit
- 5. Calculate prevalence

- I. Calculate cluster level prevalence
- 2. Use kernel estimator technique to create smoothed surface
- 3. Combine with population data to estimate users
- 4. Aggregate number of users and total number of women per administrative unit
- 5. Calculate prevalence

- I. Calculate cluster level prevalence
- 2. Use kernel estimator technique to create smoothed surface
- 3. Combine with population data to estimate users
- 4. Aggregate number of users and total number of women per administrative unit
- 5. Calculate prevalence

- I. Calculate cluster level prevalence
- 2. Use kernel estimator technique to create smoothed surface
- 3. Combine with population data to estimate users
- 4. Aggregate number of users and total number of women per administrative unit
- 5. Calculate prevalence

- I. Calculate cluster level prevalence
- 2. Use kernel estimator technique to create smoothed surface
- 3. Combine with population data to estimate users
- 4. Aggregate number of users and total number of women per administrative unit
- 5. Calculate prevalence

District Level mCPR in 2021

Н

Low - Prevalence	Growth – Potential for	High-Prevalence:		
Slow or Little Growth	Rapid Acceleration	Leveling-Off		
Kaabong (3.1%) Kotido (5.7%) Moroto (7.1%) Napak (8.5%) Nabilatuk (11.1%) Karenga (12.1%)	Karenga (17.6%) Obongi (21%)Kikuube (35.3%) Amuria (36.9%)Lwengo (40.9%) Dokolo (41.5%)Zombo (21.1%) Yumbe (21.6%)Kakumiro (37.2%) Kalaki (37.2%)Dokolo (41.5%) Hoima (41.5%)Yumbe (21.6%) Nebbi (22%)Ngora (37.2%) Iganga (37.6%)Rwampara (41.5%) Butebo (42.2%)Madi Okollo (23.4%) Pakwach (23.6%)Kiryandongo (37.6%)Butebo (42.2%) Bukedea (42.3%)Amudat (24.2%) Amudat (24.2%)Nakasongola (37.8%)Otuke (42.2%) Bukedea (42.3%)Abim (24.4%) Kabim (24.4%)Kamuli (38.3%) Luuka (38.3%)Budaka (42.4%) 	Luwero (45.1%) Sironko (45.3%) Ntungamo (45.7%) Kisoro (46.1%) Bulambuli (46.3%) Gomba (46.7%) Rubirizi (46.8%) Kampala (46.9%) Alebtong (47%) Nakaseke (47.3%) Bukwo (47.7%) Buhweju (48.1%) Kassanda (48.4%) Oyam (48.5%) Kiboga (49.1%) Kassanda (48.4%) Oyam (48.5%) Kiboga (49.1%) Kween (49.2%) Kapchorwa (49.3%) Wakiso (49.3%) Mbale (49.4%) Omoro (49.5%) Rukungiri (49.6%) Bududa (49.8%) Rubanda (49.9%) Bundiou (50.4%) Manafwa (51.2%) Mukono (51.4%) Kabarole (51.6%) Bundiougyo (52.1%) Rukiga (52.1%) Mityana (52.2%) Mityana (53.2%) Kalangla (53.2%) Kalangla (53.2%) Kalangla (53.2%) Kalangla (53.2%) Kalangla (53.2%) Kalangla (53.2%) Kale (54.3%)		

How do we use SAE to benchmark progress?

Family Planning Estimation Tool

- Modeling software used to create annual FP2020 estimates
- Incorporates surveys and service statistics
- Used at national and subnational level

- FPET inputs
 - mCPR, tCPR, unmet need (married and unmarried women)
- SStoEMU prep
 - Since we have service statistics at low levels, we want to use the SStoEMU tool at lower levels

District Level FPET Results for 2021

Married Women

All Women

Next Steps: Adding in Service Statistics

- Service statistics from the DHIS2 transformed into Estimated Modern Users (EMUs)
- EMUs can be integrated in FPET to inform trend after most recent survey